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Abstract
We develop a finite temperature field theory formalism in any dimension that has
the filling fractions as the basic dynamical variables. The formalism efficiently
decouples zero temperature dynamics from the quantum statistical sums. The
zero temperature ‘data’ are the scattering amplitudes. A saddle-point condition
leads to an integral equation which is similar in spirit to the thermodynamic
Bethe ansatz for integrable models, and effectively resums infinite classes of
diagrams. We present both relativistic and non-relativistic versions.

PACS numbers: 05.30.Fk, 02.30.Ik, 03.70.+k

1. Introduction

For the investigation of finite temperature quantum field theory, the standard and well-
developed formalism is based on the Euclidean field theory with time compactified on a
circle of circumference β = 1/T , where T is the temperature. In practice, this involves the
sums over Matsubara frequencies in perturbation theory [1, 2]. Though this formalism is very
useful for some problems, such as the finite temperature dependence of the effective potential
[3], for other properties, such as the equation of state involving the pressure and density, it
would be desirable to have a formalism that more clearly preserves the classical picture of a
gas of particles at given density and interacting via collisions.

It helps to realize that at least in principle it is possible to decouple the zero temperature
dynamics and the quantum statistical sums. The argument is simple: the computation of
the partition function Z = Tr(e−βH) is in principle possible from the complete knowledge
of the zero temperature eigenstates of the Hamiltonian H. In practice this is rather difficult
and one resorts to perturbative methods such as the Matsubara method, which unfortunately
entangles the zero temperature dynamics from the quantum statistical mechanics. However,
there does exist a beautiful realization of this kind of decoupling for integrable quantum
field theories in two spacetime dimensions due to Yang and Yang [4], which is referred to as
the thermodynamic Bethe ansatz (TBA). (For the relativistic version, see [5].) In this formalism
the decoupling is manifest. The free energy is expressed in terms of a pseudo-energy; in fact
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it takes the free field form, and the pseudo-energy is a solution of an integral equation whose
kernel depends on the zero temperature S-matrix. In fact, the S-matrix and the free-particle
dispersion relation are the only properties of the theory that are needed as input. The TBA is
a very powerful tool for tracking RG flows and for computing the conformal central charge at
the fixed points, and this was one of the main motivations for this work.1

Dashen, Ma and Bernstein derived an expression for the partition function in terms of the
S-matrix in [6]. The derivation is very general, does not rely on integrability, and is valid in any
number of spacetime dimensions2. The main result in [6] is rather formal, and a considerable
amount of additional work is needed to churn it into a useful computational tool. Though some
steps towards further developing the formalism were taken in [6, 8], the program was never
completed and appears to be eventually abandoned in favour of the Matsubara approach. As
should be clear in our work, some important aspects of the approach were not well understood
in the original works.

In this paper, we show that, with a new interpretation, the main formula of Dashen
et al, can serve as the starting point for a finite temperature formalism based on the physical
occupation number densities and zero temperature scattering amplitudes. First, by using the
cluster expansion for the S-matrix in a way not exploited in [6], we are able to resolve certain
difficulties previously encountered and render the formalism considerably more appealing.
Secondly, through a Legendre transformation we are able to formulate the quantum statistical
mechanics directly in terms of dynamical filling fractions. By ‘dynamical’ we refer to the
property that they are determined from a variational principle, or saddle-point condition, as in
the TBA.

We wish to also point out the work of Lee and Yang on quantum statistical mechanics
[9] which preceeded the TBA work of Yang and Yang. That approach is not based on the
S-matrix but rather on matrix elements of e−βH itself. Since these matrix elements depend on
the temperature, that approach does not disentangle the dynamics from the statistical sums.
Nevertheless, we found some of the ideas, in particular diagramatic description, very useful.

An outline of the paper is the following. In the following section we describe in a
completely general way how one formulates quantum statistical mechanics of gases in terms
of dynamical filling fractions. In section 3, the main result of [6] is reviewed and some
potential difficulties pointed out with so-called type B terms. In section 4, we show how
the extensivity of the free energy follows from the cluster decomposition of the S-matrix,
however in a delicate way that actually provides some constraints on the interpretation. We
argue that the formalism is only consistent with the cluster decomposition if one passes to
Euclidean space. This also suggests a possible solution to the problem with the type B terms.
In section 5, we present a diagrammatic description of the formalism. It must be stressed
that the resulting diagrams have nothing to do with finite temperature Matsubara/Feynman
diagrams. In section 6, we show that for the saddle-point construction of section 2, one needs
only consider the two-particle irreducible diagrams. The saddle-point equation is an integral
equation that automatically resums infinite numbers of diagrams. In section 7, we consider
contributions that come only from two-body scattering. Here also the integral equation sums
infinite numbers of ‘foam’ diagrams. Though we originally had in mind applications to
relativistic field theory at high temperatures, our construction does not assume the underlying
theory is Lorentz invariant. In section 8, we develop the non-relativistic case and solve the
integral equation for a constant two-body scattering amplitude.

1 In this 2D context, the central charge c is the coefficient of the conformal free energy F = −cπT 2/6 and c is the
same c as appears in the Virasoro algebra.
2 To our knowledge, a complete derivation of the thermodynamic Bethe ansatz equations from this formalism is not
known. Some steps in this direction were taken in [7].
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It is well known that in order to obtain sensible results in finite temperature field theory
certain resummations of diagrams are necessary (see for instance [1, 2, 10, 11].) Since these
resummations are also usually performed with the help of an integral equation, we remark on
the relation of some of these formalisms to ours. In the case of a constant scattering amplitude,
which is often the case to lowest order, our kernel is constant and the integral equation is quite
similar to the self-consistency equations in [1, 2] and the saddle-point equations in [10]. In the
non-relativistic case they are very similar to self-consistency equations in Hartree–Fock [12].
Thus, in the two-body approximation our integral equation is a generalization of these methods
where the constant kernel is replaced by the full two-body zero-temperature S-matrix. One
should also mention the ‘thermo field dynamics’ approach [13], which also is partly based on
filling fractions. Since the latter has mainly been developed for finite-temperature correlation
functions rather than the partition function and thus involves a doubling of particle species
because of its connection with the Schwinger–Keldysh for malism, a direct connection with
our formalism is not so straightforward.

In the concluding section, we comment on the potential advantages of our formalism for
certain classes of problems.

2. Free energy as a dynamical functional of filling fractions

In the scattering description of quantum statistical mechanics that we will develop, a
momentum space description is obviously appropriate. A very physical momentum space
description uses the occupation number densities as the basic dynamical variables. In this
section we generally describe how this can be done and illustrate it for free particles.

The free-energy density (per volume) F is defined as

F = − 1

βV
log Z, Z = Tr e−β(H−µN), (1)

where β = 1/T , µ are the inverse temperature and chemical potential, V is the d-dimensional
spacial volume, and H and N are the Hamiltonian and particle number operator. Since log Z

is an extensive quantity, i.e. proportional to the volume, the pressure p of the gas is minus
the free-energy density since p = T ∂ log Z/∂V = −F . For now, let us assume there is one
species of bosonic (s = 1) or fermionic (s = −1) particle. Given F(µ), one can compute the
thermally averaged number density n:

n = −∂F
∂µ

≡
∫

ddk
(2π)d

f (k), (2)

where k is the d-dimensional momentum vector. (D = d + 1 is the spacetime dimension.)
The dimensionless quantities f are sometimes called the filling fractions.

One can express F as a functional of f (and µ) in a meaningful way with a Legendre
transformation. Define

G ≡ F(µ) + µn. (3)

Treating f and µ as independent variables, then using equation (2) one has that ∂µG = 0,
which implies it can be expressed only in terms of f and satisfies δG/δf = µ.

Inverting the above construction shows that there exists a functional �(f, µ):

�(f, µ) = G(f ) − µ

∫
ddk

(2π)d
f (k), (4)

which satisfies equation (2) and is a stationary point with respect to f :
δ�

δf
= 0. (5)
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The above stationary condition is to be viewed as determining f as a function of µ. The
physical free energy is then F = � evaluated at the solution f to the above equation. We
will refer to equation (5) as the saddle-point equation since it is suggestive of a saddle-point
approximation to a functional integral:

Z =
∫

Df e−βV �(f ) ≈ e−βVF . (6)

Let us illustrate these definitions for a free theory, in a way that will be useful in the
follwing. In a free theory, the eigenstates of H are multi-particle Fock space states |k1, k2, . . .〉.
Let ωk denote the one-particle energy as a function of momentum k. It is well known that the
trace over the multi-particle Fock space gives

F0(µ) = s

β

∫
ddk

(2π)d
log(1 − s e−β(ωk−µ)). (7)

From the definition equation (2) one finds the filling fractions

f (k) = 1

eβ(ωk−µ) − s
≡ f0(k). (8)

In order to find the functional �(f, µ) one first computes G from equation (3) and eliminates
µ to express it in terms of f using equation (8). One finds

�0(f, µ) =
∫

ddk
(2π)d

(
(ωk − µ)f − 1

β
[(f + s) log(1 + sf ) − f log f ]

)
. (9)

One can then easily verify that δ�/δf = 0 has the solution f = f0, and plugging this back
into equation (9) gives the correct result equation (7) for F0.

There is another way to view the above construction which involves the entropy. Write
equation (9) as

� = E − 1

β
S, (10)

where E is the first (ω − µ)f term in equation (9), which is the energy density, and S is the
remaining term in brackets. One can show by a standard counting argument, which involves
the statistics of the particles, that S represents the entropy density of a gas of particles (see for
instance [14].)

In the follwing, it will be convenient to trade the chemical potential variable µ for the
variable f0:

�0(f, f0) = − 1

β

∫
ddk

(2π)d

(
s log(1 + sf ) + f log

(
1 + sf

f

f0

1 + sf0

))
. (11)

In section 6 we will express the corrections to � for an interacting theory in terms of scattering
amplitudes.

3. Formal expression for Z in terms of the S-matrix

The trace that defines Z is computed with respect to a complete set of orthogonal states |α〉:
〈α′|α〉 = δα′α, 1 =

∑
α

|α〉〈α| �⇒ Z =
∑

α

〈α| e−β(H−µN)|α〉. (12)

Let us separate H into free (H0) and interacting (H1) parts

H = H0 + H1. (13)
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Since the states α in equation (12) are not required to be eigenstates of H, let us take the trace
over eigenstates of H0:

H0|α〉 = Eα|α〉. (14)

In the following section we will specialize to plane-wave scattering states, but for the remainder
of this section one need not be so specific.

It was shown how to express the thermal trace in terms of the S-matrix in [6]. The
necessary algebraic tools are familiar from the formal theory of scattering [15, 16]. There is
a simple derivation of what will turn out to be the essential term which goes as follows. For
simplicity, we first set the chemical potential µ to zero; it can easily be restored at the end by
letting ωk → ωk − µ. Define the resolvent operator

G(E) = 1

E − H + iε
, (15)

where E is a real variable and ε is small and positive. If H is Hermitian, then in the limit
ε → 0+,

G(E) − G(E)† = −2π i δ(E − H). (16)

Assuming that the spectrum of H has E � 0, one then evidently has

Z = − 1

2π i

∫ ∞

0
dE e−βE Tr(G(E) − G†(E)). (17)

Henceforth, we will not always display that operators depend on the variable E; all operators
depend on E except for H,H0,H1.

In order to obtain an expression that is meaningful when the trace is taken over the free
Fock space, one wants to separate out expressions depending on H0 as much as possible. The
resolvent satisfies the equation3

G = G0 + G0H1G, (18)

where G0(E) = (E − H0 + iε)−1. As in standard discussions of scattering (see e.g. [15]),
define the operator

T (E) = H1 + H1G(E)H1. (19)

It satisfies

H1G = T G0, GH1 = G0T . (20)

Using equation (20), one now has

G = G0 + G0T G0 (21)

and

Z = Z0 − 1

π
Im

∫ ∞

0
dE e−βE Tr(G0T G0), (22)

where Z0 = Tr e−βH0 is the partition function of the free theory. Using now the cyclicity of
the trace, ∂EG0 = −G2

0, an integration by parts, and Im G0 = −πδ(E − H0), one finds

Z = Z0 + ZA + ZB, (23)

where

ZA ≡ −β Re

(∫
dE e−βE Tr(δ(E − H0)T(E))

)
= −β

∑
α

e−βEα Re(Tα;α). (24)

3 (A − B)−1 = A−1(1 + B(A − B)−1) = (1 + (A − B)−1B)A−1.
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The term ZB involves ∂ET = −T G2
0T and is thus quadratic in T. The derivation in [6]

performs further algebraic manipulations of equation (22) and elegantly expresses the final
result for both ZA,B in terms of the S-matrix. The construction is summarized in appendix,
where one finds

Z = Z0 +
1

4π i

∫ ∞

0
dE e−βE Tr(S−1↔

∂ ES), (25)

where X
↔
∂ EY ≡ X(∂EY ) − (∂EX)Y , and S(E) is an operator valued function of E related to

the S-matrix4. More specifically,

S(E) = 1 − 2π i δ(E − H0)T (E)

S−1(E) = 1 + 2π i δ(E − H0)T
†(E).

(26)

The on-shell matrix elements of S(E) are the usual S-matrix elements

〈α′|S(E)|α〉 = 〈α′|α〉 − 2π i δ(E)

α′;αTα′;α, iff E = Eα, (27)

where δ
(E)

α′;α ≡ δ(Eα′ − Eα). The condition ‘iff E = Eα’ is what is referred to as ‘on-shell’.
A significant amount of work remains in order to obtain a useful calculational tool from

equation (25), and this will be the main subject of the folowing section. For now, note that
there are two types of terms (in addition to Z0) in equation (25) as in equation (23), where

ZA = −1

2

∫ ∞

0
dE e−βE Tr[∂E(δ(E − H0)(T + T†))]

ZB = −iπ
∫ ∞

0
dE e−βE Tr[(δ(E − H0)T

†)
↔
∂ E(δ(E − H0)T)].

(28)

We will refer to these as type A and type B terms. Because of the δ(E − H0) factors, we
can now trace over eigenstates |α〉 of H0 and perform the integral over E. Consider first ZA.
Integrating by parts gives

ZA = −β
∑

α

e−βEα Re(Tα;α) + δ(E)(0) Re(〈0|T |0〉), (29)

where |0〉 is the free-particle vacuum of zero energy. Assuming the vacuum is stable,
〈0|T |0〉 = 0 and the δ(E)(0) term can be dropped and equation (29) agrees with (24). (δ(E)(0)

will be regularized below.)
The type A and B terms are quite different. The type B terms are actually rather peculiar

since they may potentially spoil the extensivity of the free energy, since they do not obviously
have the same connectivity properties as the type A terms. We will return to this issue in the
following section and actually propose that they should be discarded. ZB can be simplified
using the optical theorem, which follows from S−1S = 1:

T − T † = −2π i T † δ(E − H0)T . (30)

Using this, and the cyclicity of the trace, one finds that the terms involving the derivative of
the δ-functions vanish. Inserting two complete sets of states one then finds

ZB = −iπ
∑
α,α′

e−βEα δ(Eα − Eα′)T ∗
α′;α

↔
∂ Eα

Tα′;α

= 2π
∑
α,α′

e−βEα δ(Eα − Eα′) Re(Tα′;α)
↔
∂ Eα

Im(Tα′;α). (31)

Note that the type B terms vanish if Im T = 0.

4 Another form of equation (25) is based on the identity Tr S−1
↔
∂ ES = 2i Im Tr ∂E log S, where we have used the

on-shell relation S−1 = S†. Though this form may be useful to compare with the TBA, we do not use it in this paper.



Quantum statistical mechanics of gases 9661

4. Extensivity of the free energy and the cluster decomposition

In this section, we specialize to a trace over plane wave scattering states and describe some
new features that arise. In particular, in infinite volume, the free energy is expected to be
extensive, i.e. proportional to the spacial volume V . So, one first must understand how all the
various types of terms sum up in a way that can be reorganized as the exponential of something
proportional to the volume. Clearly this has to do with properties of connectedness. In the
present formalism, this property is essentially a consequence of the cluster decomposition of
the S-matrix. The volume factors will arise from the following regularization of the momentum
space delta function:

(2π)dδ(d)(0) = lim
k=k′

∫
ddx eix·(k−k′) ≡ V. (32)

If expression (23) clusters in the expected way, then the free energy −T log Z can be identified
with the sum of all terms with only one power of V . As we will show, requiring that the
cluster decomposition for (23) leads to a free energy with this property actually provides some
constraints on the interpretation of various terms.

4.1. Fock space and S-matrix conventions

Since we are considering a quantum field theory, the Hilbert space of the free theory is a
Fock space. Let us now fix our normalizations for the free-particle states and their scattering
amplitudes. The creation–annihilation operators satisfy

aka
†
k′ − sa

†
k′ak = (2π)dδ(d)(k − k′). (33)

The Hilbert space is then spanned by the multi-particle states

|k1k2 · · · kN 〉 =
(∏

i

√
2ωki

)
a
†
k1

· · · a†
kN

|0〉 (34)

satisfying

H0|k1k2 · · · kN 〉 =
(∑

i

ωki

)
|k1k2 · · · kN 〉. (35)

(The factors
√

2ωk are a matter of convention.) One has the nonzero inner products

〈k′
1 · · · k′

N |k1 · · · kN 〉 = (2π)Nd
∑
P

sp

N∏
i=1

2ωki
δ(k′

i − ki ), (36)

where the sum is over the N ! permutations P of the order of the k′
i and p(P) is the degree

of the permutation such that p = 0 (p = 1) if P involves an even (odd) number of pairwise
permutations of particles. The above implies the following resolution of the identity:

1 =
∞∑

N=0

1

N !

∫
dk1 dk2 · · · dkN |k1 · · · kN 〉〈k1 · · · kN |, (37)

where for convenience we have defined the notation∫
dk ≡

∫
ddk

(2π)d

1

2ωk
. (38)

(We have chosen our normalization of states so that the above integration measure over k is
Lorentz invariant. We emphasize however that we are not assuming the theory to be Lorentz
invariant; a non-relativistic case is worked out in section 8.)
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4.2. Cluster decomposition

In order to simplify the notation, the free-particle states |k1, k2, . . . , kn〉 will be denoted as
|12 . . . n〉 and the S-matrix elements as

〈k′
1, k′

2, . . . , k′
n|S|k1, k2, . . . , km〉 = S1′2′ ···n′;12···m. (39)

For the S-matrix the cluster decomposition is based on the physical requirement that particles
that are causally separated cannot scatter (see for instance [16]). The cluster decomposition
also ensures that the free energy only depends on connected S-matrix elements. The cluster
decomposition may be expressed as follows:

〈α′|S|α〉 =
∑

partitions

spSc
α′

1;α1
Sc

α′
2;α2

Sc
α′

3;α3
· · · , (40)

where the sum is over partitions of the state |α〉 into clusters |α1〉, |α2〉, . . .. (The number of
particles in |αi〉 and 〈α′

i | is not necessarily the same.) The above formula essentially defines
what is meant by the connected matrix elements Sc. The particles are assumed to be stable
which implies

〈k′
1|S|k1〉 = 〈k′

1|k1〉 = (2π)d2ωk1δ
(d)(k′

1 − k1) ≡ δ
(k)
1′1 . (41)

It will be convenient to express the cluster decomposition in terms of T̂ defined by

S = 1 + iT̂ . (42)

The cluster decomposition for T̂ is then same as for that of S but without the terms involving
only delta functions which come from the ‘1’ in S = 1 + iT̂ . (One can show that these
additional terms involving only delta functions are what give rise to Z0.) The connected
matrix elements T̂ c are characterized as having only a single overall momentum and energy
conserving delta function and cannot be factorized into functions of only a subset of the
momenta. Below we will need T̂ c in terms of the conventional scattering amplitudes M:

T̂ c
α′;α = −2πδ

(E)

α′;αTα′;α = (2π)d+1δ
(E)

α′;αδ(d)(kα − kα′)Mα′;α, (43)

where Eα, kα are the total energy and momentum of the state |α〉 and δ
(E)

α′;α ≡ δ(E)(Eα′ − Eα).
For 2 → 2 and 3 → 3 particles the cluster decomposition for T̂ then reads

T̂1′2′;12 = T̂ c
1′2′;12 T̂1′2′3′;123 = T̂ c

1′2′3′;123 +
[
δ

(k)
1′1 T̂ c

2′3′;23 ± perm.
]

9. (44)

The subscript ‘9’ indicates the number of permutations within the brace. If the one-
particle states were not stable, there would be additional terms. In order to illustrate some
important additional features, we will also need the 4 → 4 particle decomposition

T̂1′2′3′4′;1234 = T̂ c
1′2′3′4′;1234 + i

[
T̂ c

1′2′;12T̂
c

3′4′;34 ± perm.
]

18 +
[
δ

(k)
1′1 T̂ c

2′3′4′;234 ± perm.
]

16

+
[
δ

(k)
1′1δ

(k)
2′2 T̂ c

3′4′;34 ± perm.
]

72. (45)

4.3. One-particle resummation and emergence of filling fractions

To compute the required trace, one must set {k′ = k}. This leads to a more specialized
cluster decomposition that is suitable to compute Z. For instance, the nine terms in braces in
equation (44) separate into 3 + 6 distinct types of terms depending on whether they contain
δ(d)(0):

T̂123;123 = T̂ c
123,123 +

[
(2π)dδ(d)(0)2ωk1 T̂

c
23;23 ± perm.

]
3 +

[
sδ

(k)
12 T̂ c

23;13 ± perm.
]

6. (46)
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In order to illustrate the variety of terms that can arise from the cluster decomposition, let
us compute the type A terms for low numbers of particles. For simplicity, we set the chemical
potential to zero. For two particles one finds

ZA|2 part. = βV

2

∫
dk1 dk2 e−β(ω1+ω2) Re(M12;12), (47)

where we have used equation (32).
(
ωi ≡ ωki

)
For three particles one finds

ZA|3 part. = βV

3!

∫
dk1 dk2 dk3 e−β(ω1+ω2+ω3) Re(M123;123) (48)

+ s
βV

2

∫
dk1 dk2 e−β(ω1+ω2)(e−βω1 + e−βω2) Re(M12;12) (49)

+ βV 2

(∫
dk1 dk2 e−β(ω1+ω2) Re(M12;12)

) (∫
ddk

(2π)d
e−βωk

)
. (50)

These terms have the following interpretation. Equation (48) is a new contribution of the
same kind as equation (47). Term (49) just modifies the integration measure dk for the (47)
term. The combined measure factors are the first terms in the expansion of the free filling
fraction f0 defined in equation (8). This manner in which the filling fraction emerges was also
a feature of one approach to finite temperature correlation functions in [18, 19]. The last term
is proportional to V 2 and is thus expected to be a V 2 term in the expression Z = exp(−βVF).
One can easily verify that it is the correct combinatorial product of a term from the free
contribution F0 and another from the two-particle contribution in equation (47).

A simple combinatorial argument shows that one can sum up all the terms that are a
product of one T̂ c and some δ

(k)
nm factors to obtain

F = F0 −
∞∑

N=2

1

N !

∫ (
N∏

n=1

ddkn

(2π)d

f0(kn)

2ωkn

)
Re(M12...N;12...N) + · · · . (51)

Restoring the chemical potential µ, the dependence on it is only through f0 as given in
equation (8).

For a scalar field interacting with potential V (φ) = λφ4/4!, to lowest order M12;12 = −λ

[17] and the two-particle contribution in equation (51) gives the same result to order λ, as the
Matsubara approach [1]. (In the latter approach this arises as a two-loop finite temperature
Feynman diagram.) The 3 → 3 particle contribution to equation (51) was also shown to agree
with the three-loop result in [20].

4.4. The need to continue to Euclidean space

There are additional contributions to F that come from terms in the cluster expansion that
involve more than one T̂ c factor. They first arise at four particles. The terms in T̂1234;1234 that
give new contributions to F not already included in equation (51) are the following:

T̂1234;1234 = i
[
T̂ c

12;12T̂
c

34;34

]
3 + i

[
sT̂ c

13;12T̂
c

24;34

]
12 + i

[
T̂ c

12;34T̂
c

34;12

]
3 + · · · . (52)

In order to compute their contribution to ZA, we start with expression (24) in terms of T. We
then obtain the cluster decomposition of T from equation (52) using T̂α′;α = −2πδ

(E)

α′;αTα′;α .
In carrying this out, one sees that one can divide both sides of equation (52) by δ(E)(0) and
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obtain something well defined. Finally, we express the final result in terms of the scattering
amplitudes M. The first term in equation (52) in this way leads to

ZA|4 part. = · · · βV 2

8
Re

[
2π i δ(E)(0)

(∫
dk1 dk2 e−β(ω1+ω2)M12;12

)2
]

+ · · · . (53)

Since this is proportional to V 2 it must come from the square of the two-particle term in
the expansion of Z = (1 + · · ·) exp

(
βV/2

∫
Re(M12;12)

)
. In attempting to match this with

equation (53), one notices a very interesting phenomenon: the two terms can only be identified
after one makes the Wick rotation

δ
(E)

α′;α → −iδ(E)

α′;α. (54)

One then regularizes the δ(E)(0) as follows:

2πδ(E)(0) ≡ β. (55)

The above equation can be understood as following from the fact that in the Matsubara
approach to finite temperature field theory, one goes to Euclidean space and compactifies the
time on a circle of circumference, i.e. volume, β. The above equation is then simply the
Euclidean time version of equation (32).

Implementing the rules discussed in the last paragraph, the two additional sets of terms
in the cluster decomposition (52) lead to two new contributions to the free energy. In the
resummation of one-particle terms, the filling fractions f0 again emerge. These lead to

F =− sβ

2

∫
ddk1

(2π)d

ddk2

(2π)d

ddk3

(2π)d

f0(k1)

2ω1

f0(k2)
2

4ω2
2

f0(k3)

2ω3
Re(M12;12M23;23) (56)

−1

8

∫
ddk1

(2π)d

ddk2

(2π)d

ddk3

(2π)d

(
4∏

n=1

f0(kn)

2ωn

)
2πδ

(E)

12;34 Re(M12;34M34;12) + · · · , (57)

where k4 = k1 + k2 − k3 and ω4 = ωk4 .

4.5. ZB terms: to B or not to B?

We now return to the issue of the type B terms in equation (31). It is clear from the previous
results of this section that the property of the extensivity of the free energy arises in a delicate
way from the cluster decomposition. Since Z = Z0 + ZA + ZB and the ZB terms are quadratic
in T, they could very easily spoil the extensivity. We have already shown how Z0 + ZA

exponentiates to something proportional to the volume, but the way this comes about is quite
subtle.

One may argue that the need to go to Euclidean space can potentially cure this problem,
at least for relativistic theories. In trying to perform the match discussed in the last subsection,
one actually needs a stronger constraint:

β

(∫
Re(M12;12)

)2

= Re

[
2πδ(E)(0)

(∫
M12;12

)2
]

. (58)

That is M12;12 must be real. It is well known that for relativistic theories, the imaginary
parts of scattering amplitudes arise through cuts when one is in Minkowski space [17]. In
Euclidean space the imaginary part actually vanishes. Since ZB involves the imaginary part of
the amplitude’s, this argument would indicate that the ZB terms can be discarded. However,
further checks of the consistency of this argument, in particular with unitarity of the S-matrix,
would be helpful.
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...

...

21 m

n−1 n1

k 

= 2πδ(E)
12..m;12..n M12..m;12..n

= f0(k)/2ωk

Figure 1. Diagrammatic ingredients.

5. Diagrammatic description

The contributions to F have a nice diagrammatic description. Let us represent the scattering
amplitudes M12...m;12...n as a vertex with n incoming and m outgoing lines. We construct a
diagram with no external lines by linking the lines of vertices. The rules for computing a
contribution to the free-energy density F are then the following.

(i) Assign a factor of the scattering amplitude and an energy conserving delta function
2πδ

(E)

α′;αMα′;α to each vertex as in figure 1.
(ii) Assign a factor f0(k)/2ωk to each line as in figure 1.

(iii) Conserve momentum k at each vertex and integrate over every unconstrained momentum
with

∫
d(d)k/(2π)d .

(iv) Identify 2πδ(E)(0) = β.
(v) Divide by the symmetry factor of the diagram, defined as the number of permutations of

the internal lines that do not change the topology of the graph, including relative positions.
(vi) For fermions determine the overall sign of the diagram: it has an overall factor of s if it

arises from an odd permutation of the outgoing state 〈1′2′ . . .| in the cluster expansion of
〈1′2′ . . .|T |12 . . .〉.

(vii) Divide by −β.

The terms in equation (51) are then represented by the diagram in figure 2. The two terms
in equations (56), (57) are represented as diagrams in figure 3.

The structure of the ‘ring’ diagrams shown in figure 4 is especially simple. We compute
the sum of such diagrams in order to illustrate the above rules and also since we will need the
result in the following section. Let the diagram in figure 4 be denoted as F (n)

ring. The symmetry
factor of this diagram is 2 for n = 1 and n for n � 2. For fermions, the overall sign of the
diagram is sn+1. The sum over n then simply gives a log

∞∑
n=2

F (n)
ring = − 1

β

∫
ddk

(2π)d

(
−y0(k)

2
− s log(1 − sy0(k))

)

y0(k) ≡= βf0(k)

2ωk

∫
ddk′

(2π)d
M12;12(k, k′)

f0(k′)
2ωk′

.

(59)
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. .
.

N

1

3

2

Figure 2. Diagrammatic representation of terms in equation (51).

Figure 3. Diagrammatic representation of the two terms in equations (56) and (57) respectively.

n

.

.
.

1

3

2

Figure 4. Ring diagrams.

6. � and the saddle-point equations

We now return to including interactions in the free-energy functional � of section 2. Let us
write

�(f, f0) = �0(f, f0) + �1, (60)

where �0 is given in equation (11) and we define U as the ‘potential’ which incorporates
interactions

�1 = − 1

β

∫
ddk

(2π)d
U(k). (61)

It is not too difficult to understand that �1 is given by the two-particle irreducible diagrams
of the last section. These are defined as diagrams that cannot become disconnected by the
cutting of two internal lines. For instance, starting from the N = 2 diagram in figure 2,
it is clear that the ring diagrams can be generated by attaching additional loops. The ring
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+ + + + . . . F1 =

Figure 5. �1 as the sum of two-particle irreducible diagrams.

diagrams are not two-particle irreducible and should thus not be included in �1. A more
detailed argument was given by Lee and Yang [9]. We express this explicitly as follows: �1

is just F2−part.irred.(f0) with f0 replaced by f :

�1(f ) =
∑

F2−part.irred.(f0 → f ). (62)

This is shown in figure 4, where it is implicit that the lines have a factor of f rather than f0.

Given �, f is determined by the saddle-point equation

log

(
1 + sf

f

)
− log

(
1 + sf0

f0

)
= −∂U

∂f
. (63)

Substituting the solution of (63) back into �, it can be written in a variety of ways, depending
on how one utilizes relation (63). One useful way is

F = − 1

β

∫
ddk

(2π)d
[s log(1 + sf ) + (1 − f ∂f )U ]

= F0 − 1

β

∫
ddk

(2π)d

[
s log

(
1 + sf

1 + sf0

)
+ (1 − f ∂f )U

]
. (64)

It is convenient to define a pseudo-energy ε as the following parameterization of f :

f ≡ 1

eβε − s
. (65)

Then the saddle-point equation and free-energy density take the form

ε = ω − µ − 1

β

∂U

∂f
(66)

F = − 1

β

∫
ddk

(2π)d
[−s log(1 − s e−βε) + (1 − f ∂f )U ]. (67)

7. Two-body approximation

If the gas is not too dense, one expects that two-particle scattering will give the most important
contribution. This is especially true in the non-relativistic case where scattering preserves the
number of particles.

Define the following kernel from the two-particle scattering amplitude:

K(k, k′) ≡ 1

4ωk ωk′
M12;12(k, k′) (68)

and the convolution

(K ∗ f )(k) ≡
∫

ddk′

(2π)d
K(k, k′)f (k′). (69)
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Figure 6. Foam diagrams.

The two-particle contribution to U can then be written as

U(k) = β

2
f (k)(K ∗ f )(k). (70)

The saddle-point equation and free energy then take the forms

log

(
1 + sf

f

)
− log

(
1 + sf0

f0

)
= −βK ∗ f (71)

F = − 1

β

∫
ddk

(2π)d

[
s log(1 + sf ) +

f

2
log

(
1 + sf

f

f0

1 + sf0

)]
. (72)

In terms of the pseudo-energy

ε = ω − µ − K ∗
(

1

eβε − s

)
(73)

F = − 1

β

∫
ddk

(2π)d

[
−s log(1 − s e−βε) +

βf

2
(ε − ω + µ)

]
. (74)

In this two-body approximation, the integral equation (73) resums all diagrams involving
two-body scattering. These ‘foam diagrams’ are of the kind shown in figure 6.

The foam diagrams contain much more than the ring diagrams. As a check, we now show
how the ring diagrams are contained in the solution of the integral equation. Let us define y

as log
( 1+sf

1+sf0

) = log(1 + y), where

y ≡ f − f0

1 + sf0
. (75)

The integral equation (71) can then be expanded in powers of y:

y − (1 + 2sf0)

2f0
y2 + · · · = βK ∗ (f0 + (1 + sf0)y). (76)

Now let y = y0 + y1 + · · · and plug this into the above equation. Many kinds of terms are
generated, but to compare with the ring diagrams we only focus on terms of the type in
equation (59). To lowest orders one finds

y = y0 + 2sy2
0 + · · · , (77)
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where y0 is defined in equation (59). Plugging this lowest order solution into equation (72)
for the free energy one finds

F − F0 = − 1

β

∫
ddk

(2π)d

(
y0 + sy2

0

/
2 + · · · ), (78)

which agrees with the low-order expansion of equation (59).

8. Non-relativistic case: hardcore bosons

We have not assumed the underlying theory is Lorentz invariant in the above construction.
However, in the definition equation (34) of the states |k1 · · · kn〉 we included factors of

√
2ωk

in order that dk in equation (36) is Lorentz invariant. This simplifies the comparison with

other approaches for relativistic models, as we did in section 4.3 for the φ4 theory, since then
M are the conventional scattering amplitudes.

8.1. Generalities of the non-relativistic case

For non-relativistic theories, where ωk = k2/2m, it is more conventional to normalize the
states as

|k1 · · · kN 〉 = a
†
k1

· · · a†
kN

|0〉. (79)

The formulae of the previous sections still apply but with the modification

dk =
∫

ddk
(2π)d2ωk

→
∫

ddk
(2π)d

. (80)

We will keep the definition equation (43) of M in terms of T̂ . The formulae for the
two-body approximation in section 7 then all apply, but now with

K(k, k′) ≡ M12,12(k, k′). (81)

The above kernel has dimensions of energy × volume which corresponds to an energy
dimension of 1 − d (up to velocity factors).

8.2. Hardcore boson model

Consider the two-body potential in position space x,

V (x, x′) = γ

2
δ(d)(x − x′). (82)

This leads to the second quantized Hamiltonian

H =
∫

ddx
(

1

2m
∇ψ † · ∇ψ +

γ

4
ψ †ψ †ψψ

)
. (83)

To lowest order T = H1 and

〈α′|H1|α〉 = −(2π)dδ(d)(kα − kα′)Mα′;α. (84)

Expanding the field in terms of annihilation operators

ψ(x) =
∫

ddk
(2π)d

eik·xak, (85)

then to lowest order one finds

M12;12 = −γ = K. (86)
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The coupling constant γ has units of energy × volume. It can be expressed in terms of
a physical scattering length a as follows. To first order in perturbation theory the differential
cross section in the centre of mass is

dσ

d
= m2γ 2

4(2π)d−1
kd−3, (87)

where k is the magnitude of k for one of the incoming particles. Since a cross section has
dimensions of lengthd−1, we define a such that the cross section is ad−1 when the wavelength
of the particle is 2π/a:

dσ

d

∣∣∣∣
k∼2π/a

∼ ad−1. (88)

This leads us to make the definition

γ

(2π)d/2
≡ ad−2

m
. (89)

8.3. Lowest order solution

It is interesting to carry out our analysis for arbitrary spacial dimension d > 0. Integrals over
momenta can be traded for integrals over ω:∫

ddk
(2π)d

=
( m

2π

)d/2 1

�(d/2)

∫ ∞

0
dω ω(d−2)/2. (90)

For a constant kernel K = −γ , and d > 0, the solution to the integral equation (73) takes the
simple form

ε(k) = ωk − µ + T δ, (91)

where δ is independent of k and satisfies the equation5

δ = hLid/2(zµzδ), (92)

where we have defined the fugacities

zµ ≡ eβµ, zδ = e−δ (93)

and a renormalized thermal coupling h and thermal wavelength λT :

h ≡
(√

2πa

λT

)d−2

, λT ≡
√

2π

mT
. (94)

The function Liν(z) is the standard polylogarithm, defined as the appropriate analytic
continuation of

Liν(z) =
∞∑

n=1

zn

nν
. (95)

Equation (92) is thus seen as non-trivial, transcendental equation that determines δ as a function
of µ, T , and the coupling h. Given the solution δ(µ) of this equation, using equation (74) the
density can be expressed as

n(µ) = 1

λd
T

Lid/2(zµzδ) = T δ

γ
. (96)

5 We have used
∫ ∞

0 dx xν−1/(ex/z − 1) = �(ν)Liν(z) for Re(ν) > 0.
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For d > 0, one can integrate by parts and obtain the following expressions for the free energy:

F = − T

λd
T

(
Li(d+2)/2(zµzδ) +

δ

2
Lid/2(zµzδ)

)
. (97)

The case of 2d is interesting since equation (92) then becomes algebraic due to Li1(z) =
− log(1 − z). These formulae will be applied to Bose–Einstein condensation, and other
problems, in [23].

9. Concluding remarks

In this paper we have mainly focused on developing the formalism in a general way for
both relativistic and non-relativistic theories. In the two-body approximation, the main result
is summarized in the two formulae equations (73) and (74) and is quite straightforward to
implement: one computes, or measures, the two-body forward-scattering kernel K at zero
temperature, solves the integral equation (73), and the free energy is given in terms of this
solution in equation (74). For non-constant kernels, one will probably need to solve the
equations numerically.

A formalism that efficiently disentangles zero temperature dynamics and quantum
statistical sums potentially has many applications, and we discuss some of them in these
concluding remarks.

Our formalism is especially well suited for studies of the effects of interactions in Bose–
Einstein condensation, since there the filling fractions play a central role. We have already
obtained some results on this problem and will publish them elsewhere [23]. The results
presented there also give new insights on the Riemann hypothesis.

For high-energy particle physics, our formalism has the following potential advantages
over the Matsubara approach. The necessity to renormalize ultraviolet divergences is
essentially a zero temperature problem; however, the Matsubara approach again entangles
the zero-temperature renormalization with the quantum statistical mechanics and the issue
of scheme-dependent results can sometimes be a problem. In our formalism, any need for
renormalization is carried out at zero temperature and the S-matrix is expressed in terms of
physical quantities at zero temperature, such as particle masses, etc. Our integral equation
could also shed some light on the infra-red problems that are common in the Matsubara
approach and also require special resummations [1, 2, 10, 11, 21, 22]. We emphasize that
since the diagrams in this paper have no relation to finite temperature Feynman diagrams,
our type of resummation is entirely different than the resummations carried out in these other
works. Some aspects of the relativistic case will be published in [24]. Our formalism may
help to study the known results on the free energy of strongly coupled supersymmetric gauge
theories [26].

Our formalism may also be well suited to studies of the quark–gluon plasma [25] currently
being studied at RHIC, since many of the hadronic cross sections are known.
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Appendix

In this appendix, we complete the steps leading to result (25) obtained in [6]. Starting from
equation (22), the next step is to try and use the relation G0 − G

†
0 = −2π i δ(E − H0) so that

one can integrate over E. One way to do this is using the operators :

(E) ≡ GG−1
0 = 1 + G0T

−1(E) = G0G
−1 = 1 − G0H1.

(A.1)

As we show below,  is the operator that relates free-particle states to the in-states of scattering

theory. Introduce the notation X
↔
∂ Y ≡ X(∂Y ) − (∂X)Y . Then, using ∂EG0 = −G2

0 and
H1 = T one can readily show that

−1↔
∂ E = −2G2

0T . (A.2)

In order to deal with the complex conjugation needed in equation (22), for any operator
X(E) define X∗(E) as simply X(E) but with iε replaced by −iε. This definition gives
G∗(E) = G(E)†,∗(E) = 1 + G†H1 and (−1)∗ = 1 − G

†
0H1. One then has

(−1)∗
↔
∂ E∗ = −2

(
G

†
0

)2
T †. (A.3)

The last step is to define

S(E) = (−1)∗(E). (A.4)

Using equations (22) and (A.2), and the cyclicity of the trace, one obtains

Z = Z0 +
1

4π i

∫ ∞

0
dE e−βE Tr(S−1↔

∂ ES). (A.5)

We now demonstrate that the so-called on-shell matrix elements of the S-operator are the
usual S-matrix. Consider first the operator . Inserting a complete set of states |α′〉 one finds

(Eα)|α〉 = |α〉 +
∑
α′

1

Eα − Eα′ + iε
Tα′α|α′〉, (A.6)

where

Tα′α = 〈α′|T (E)|α〉, iff E = Eα. (A.7)

The condition E = Eα is the on-shell condition. Equations (A.6) are the Lippmann–Schwinger
equations

|α〉in = (Eα)|α〉, (A.8)

which arise from attempting to solve H |α〉in = Eα|α〉in for the in-states (which also have
energy Eα).

Turning now to the S-operator, using identities given above, one can easily establish

S(E) = 1 − 2π i δ(E − H0)T (E)

S−1(E) = 1 + 2π i δ(E − H0)T
†(E).

(A.9)

The latter implies

〈α′|S(E)|α〉 = 〈α′|α〉 − 2π i δ(Eα − Eα′)Tα′α, iff E = Eα. (A.10)

Equation (A.5) together with identification (A.9) of the S-matrix is the main result obtained
in [6].



Quantum statistical mechanics of gases 9673

References

[1] Kapusta J I 1989 Finite Temperature Field Theory (Cambridge: Cambridge University Press)
[2] Le Bellac M 1996 Thermal Field Theory (Cambridge: Cambridge University Press)
[3] Dolan L and Jackiw R 1974 Phys. Rev. D 9 3320
[4] Yang C N and Yang C P 1969 J. Math. Phys. 10 1115
[5] Zamolodchikov Al 1990 Nucl. Phys. B 342 695
[6] Dashen R, Ma S-K and Bernstein H J 1969 Phys. Rev. 187 345
[7] Thacker H B 1977 Phys. Rev. D 16 2515
[8] Dashen R and Ma S-K 1971 J. Math. Phys. 12 689
[9] Lee T D and Yang C N 1959 Phys. Rev. 113 1165

Lee T D and Yang C N 1960 Phys. Rev. 117 22
[10] Drummond I T, Horgan R R and Landshoff P V 1998 Nucl. Phys. B 524 579 (Preprint hep-ph/9708426)
[11] Blaizot J-P, Iancu E and Rebhan A 2001 Phys. Rev. D 63 065003 (Preprint hep-ph/0005003)
[12] Fetter A L and Walecka J D 1971 Quantum Theory of Many-particle Systems (New York: McGraw-Hill)
[13] Henning P A 1995 Phys. Rep. 253 235
[14] Landau L D and Lifshitz E M 1980 Statistical Physics (Oxford: Pergamon)
[15] Gottfried K and Yan T-M 2003 Quantum Mechanics: Fundamentals (Berlin: Springer)
[16] Weinberg S 1995 The Quantum Theory of Fields: I (Cambridge: Cambridge University Press)
[17] Peskin M E and Schroeder D V 1995 An Introduction to Quantum Field Theory (Reading, MA: Addison-Wesley)
[18] LeClair A, Lesage F, Sachdev S and Saleur H 1996 Nucl. Phys. B 482 579 (Preprint cond-mat/9606104)
[19] LeClair A and Mussardo G 1999 Nucl. Phys. B 552 624
[20] Bugrij A I and Shadura V N 1995 Preprint hep-th/9510232
[21] Parwani R R 1992 Phys. Rev. D 45 4695

Parwani R R 1993 Phys. Rev. D 48 5965 (Preprint hep-ph/9204216) (erratum)
[22] Braaten E and Pisarski R D 1990 Nucl. Phys. B 337 569

Braaten E and Pisarski R D 1990 Nucl. Phys. B 339 310
Frenkel J and Taylor J C 1990 Nucl. Phys. B 334 199

[23] LeClair A 2007 Interacting Bose and Fermi gases in low dimensions and the Riemann hypothesis Preprint
math-ph/0611043 at press

[24] LeClair A 2007 Pressure of relativistic quantum gases from the S-matrix in preparation
[25] Alford M G, Rajagopal K and Wilczek F 1998 Phys. Lett. B 422 247
[26] Gubser S S, Klebanov I R and Tseytlin A A 1988 Nucl. Phys. B 534 202 (Preprint hep-th/9805156)

http://dx.doi.org/10.1103/PhysRevD.9.3320
http://dx.doi.org/10.1063/1.1664947
http://dx.doi.org/10.1016/0550-3213(90)90333-9
http://dx.doi.org/10.1103/PhysRev.187.345
http://dx.doi.org/10.1103/PhysRevD.16.2515
http://dx.doi.org/10.1063/1.1665636
http://dx.doi.org/10.1103/PhysRev.113.1165
http://dx.doi.org/10.1103/PhysRev.117.22
http://dx.doi.org/10.1016/S0550-3213(98)00210-7
http://www.arxiv.org/abs/hep-ph/9708426
http://dx.doi.org/10.1103/PhysRevD.63.065003
http://www.arxiv.org/abs/hep-ph/0005003
http://dx.doi.org/10.1016/0370-1573(94)00083-F
http://dx.doi.org/10.1016/S0550-3213(96)00456-7
http://www.arxiv.org/abs/cond-mat/9606104
http://dx.doi.org/10.1016/S0550-3213(99)00280-1
http://www.arxiv.org/abs/hep-th/9510232
http://dx.doi.org/10.1103/PhysRevD.45.4695
http://dx.doi.org/10.1103/PhysRevD.48.5965.2
http://www.arxiv.org/abs/hep-ph/9204216
http://dx.doi.org/10.1016/0550-3213(90)90508-B
http://dx.doi.org/10.1016/0550-3213(90)90351-D
http://dx.doi.org/10.1016/0550-3213(90)90661-V
http://www.arxiv.org/abs/math-ph/0611043
http://dx.doi.org/10.1016/S0370-2693(98)00051-3
http://dx.doi.org/10.1016/S0550-3213(98)00514-8
http://www.arxiv.org/abs/hep-th/9805156

	1. Introduction
	2. Free energy as a dynamical functional of filling fractions
	3. Formal expression for
	4. Extensivity of the free energy and the cluster decomposition
	4.1. Fock space and
	4.2. Cluster decomposition
	4.3. One-particle resummation and emergence of filling fractions
	4.4. The need to continue to Euclidean space
	4.5. terms to B or not to B

	5. Diagrammatic description
	6. and the saddle-point equations
	7. Two-body approximation
	8. Non-relativistic case: hardcore bosons
	8.1. Generalities of the non-relativistic case
	8.2. Hardcore boson model
	8.3. Lowest order solution

	9. Concluding remarks
	Acknowledgments
	Appendix
	References

